
An Edit Friendly DDPM Noise Space:
Inversion and Manipulations

Inbar Huberman-Spiegelglas Vladimir Kulikov Tomer Michaeli
Technion – Israel Institute of Technology

inbarhub@gmail.com, {vladimir.k@campus, tomer.m@ee}.technion.ac.il

DDIM inversion Prompt-to-prompt

Prompt-to-prompt +

Our DDPM inversion

Zero Shot +

Our DDPM inversion

cat dog→

Our DDPM inversion

A sketch of a cat → A sculpture of a catA sketch of a cat → A smiling cat

A painting of a cat with white flowers→ A painting of a dog with white flowers

Real image Our DDPM inversion

Zero Shot

Our DDPM inversion

Figure 1: Edit friendly DDPM inversion. We present a method for extracting a sequence of DDPM noise maps that perfectly
reconstruct a given image. These noise maps are distributed differently from those used in regular sampling, and are more
edit-friendly. Our method allows diverse editing of real images without fine-tuning the model or modifying its attention maps,
and it can also be easily integrated into other algorithms (illustrated here with Prompt-to-Prompt [7] and Zero-Shot I2I [19]).

Abstract

Denoising diffusion probabilistic models (DDPMs) em-
ploy a sequence of white Gaussian noise samples to generate
an image. In analogy with GANs, those noise maps could be
considered as the latent code associated with the generated
image. However, this native noise space does not possess a
convenient structure, and is thus challenging to work with in
editing tasks. Here, we propose an alternative latent noise
space for DDPM that enables a wide range of editing opera-
tions via simple means, and present an inversion method for
extracting these edit-friendly noise maps for any given image
(real or synthetically generated). As opposed to the native
DDPM noise space, the edit-friendly noise maps do not have
a standard normal distribution and are not statistically in-
dependent across timesteps. However, they allow perfect
reconstruction of any desired image, and simple transforma-
tions on them translate into meaningful manipulations of the
output image (e.g. shifting, color edits). Moreover, in text-

conditional models, fixing those noise maps while changing
the text prompt, modifies semantics while retaining structure.
We illustrate how this property enables text-based editing
of real images via the diverse DDPM sampling scheme (in
contrast to the popular non-diverse DDIM inversion). We
also show how it can be used within existing diffusion-based
editing methods to improve their quality and diversity. Code
and examples are available on the project’s webpage.

1. Introduction
Diffusion models have emerged as a powerful genera-

tive framework, achieving state-of-the-art quality on image
synthesis [8, 2, 21, 18, 23, 20]. Recent works harness dif-
fusion models for various image editing and manipulation
tasks, including text-guided editing [7, 4, 25, 1, 12], inpaint-
ing [15], and image-to-image translation [22, 16, 28]. A key
challenge in these methods is to leverage them for editing of
real content (as opposed to model-generated images). This

https://inbarhub.github.io/DDPM_inversion

requires inverting the generation process, namely extracting
a sequence of noise vectors that would reconstruct the given
image if used to drive the reverse diffusion process.

Despite significant advancements in diffusion-based edit-
ing, inversion is still considered a major challenge, par-
ticularly in the denoising diffusion probabilistic model
(DDPM) sampling scheme [8]. Many recent methods (e.g.
[7, 17, 25, 4, 27, 19]) rely on an approximate inversion
method for the denoising diffusion implicit model (DDIM)
scheme [24], which is a deterministic sampling process that
maps a single initial noise vector into a generated image.
However this DDIM inversion method becomes accurate
only when using a large number of diffusion timesteps (e.g.
1000), and even in this regime it often leads to sub-optimal
results in text-guided editing [7, 17]. To battle this effect,
some methods fine-tune the diffusion model based on the
given image and text prompt [11, 12, 26]. Other methods
interfere in the generative process in various ways, e.g. by in-
jecting the attention maps derived from the DDIM inversion
process into the text-guided generative process [7, 19, 25].

Here we address the problem of inverting the DDPM
scheme. As opposed to DDIM, in DDPM, T +1 noise maps
are involved in the generation process, each of which has
the same dimension as the generated output. Therefore, the
total dimension of the noise space is larger than that of the
output and there exist infinitely many noise sequences that
perfectly reconstruct the image. While this property may
provide flexibility in the inversion process, not every consis-
tent inversion (i.e. one that leads to perfect reconstruction)
is also edit friendly. For example, one property we want
from an inversion in the context of text-conditional models,
is that fixing the noise maps and changing the text-prompt
would lead to an artifact-free image, where the semantics
correspond to the new text but the structure remains similar
to that of the input image. What consistent inversions satisfy
this property? A tempting answer is that the noise maps
should be statistically independent and have a standard nor-
mal distribution, like in regular sampling. Such an approach
was pursued in [28]. However, as we illustrate in Fig. 2, this
native DDPM noise space is in fact not edit friendly.

Here we present an alternative inversion method, which
constitutes a better fit for editing applications, from text-
guidance manipulations, to editing via hand-drawn colored
strokes. The key idea is to “imprint” the image more strongly
onto the noise maps, so that they lead to better preservation
of structure when fixing them and changing the condition
of the model. Particularly, our noise maps have higher vari-
ances than the native ones, and are strongly correlated across
timesteps. Importantly, our inversion requires no optimiza-
tion and is extremely fast. Yet, it allows achieving state-of-
the-art results on text-guided editing tasks with a relatively
small number of diffusion steps, simply by fixing the noise
maps and changing the text condition (i.e. without requir-

a
ph

ot
o

of
 a

 h
or

se
in

 t
h
e
 m

ud

Native latent space Our latent space

F
lip

S
h

if
t

a
ph

ot
o

of
 a

 z
e
b
ra

in
 t

h
e
 s

no
w

Generated image

Figure 2: The native and edit friendly noise spaces. When
sampling an image using DDPM (left), there is access to the
“ground truth” noise maps that generated it. This native noise
space, however, is not edit friendly (2nd column). For exam-
ple, fixing those noise maps and changing the text prompt,
changes the image structure (top). Similarly, flipping (mid-
dle) or shifting (bottom) the noise maps completely modifies
the image. By contrast, our edit friendly noise maps enable
editing while preserving structure (right).

ing model fine-tuning or interference in the attention maps).
Our DDPM inversion can also be readily integrated with
existing diffusion based editing methods that currently rely
on approximate DDIM inversion. As we illustrate in Fig. 1,
this improves their ability to preserve fidelity to the original
image. Furthermore, since we find the noise vectors in a
stochastic manner, we can provide a diverse set of edited
images that all conform to the text prompt, a property not
naturally available with DDIM inversion (see Figs. 1, 16, 17).

2. Related work

2.1. Inversion of diffusion models

Editing a real image using diffusion models requires ex-
tracting the noise vectors that would generate that image
when used within the generative process. The vast major-
ity of diffusion-based editing works use the DDIM scheme,
which is a deterministic mapping from a single noise map
to a generated image [7, 17, 25, 4, 27, 19, 6]. The original
DDIM paper [24] suggested an efficient approximate inver-
sion for that scheme. This method incurs a small error at
every diffusion timestep, and these errors often accumulate
into meaningful deviations when using classifier-free guid-

ance [10]. Mokady et al. [17] improve the reconstruction
quality by fixing each timestep drifting. Their two-step ap-
proach first uses DDIM inversion to compute a sequence of
noise vectors, and then uses this sequence to optimize the
input null-text embedding at every timestep. EDICT [27] en-
ables mathematically exact DDIM-inversion of real images
by maintaining two coupled noise vectors which are used to
invert each other in an alternating fashion. This method dou-
bles the computation time of the diffusion process. Recently,
Wu et al. [28] presented a DDPM-inversion method. Their
approach recovers a sequence of noise vectors that perfectly
reconstruct the image within the DDPM sampling process,
however as opposed to our method, their extracted noise
maps are distributed like the native noise space of DDPM,
which results in limited editing capabilities (see Figs. 2,4).

2.2. Image editing using diffusion models

The DDPM sampling method is not popular for editing
of real images. When used, it is typically done without exact
inversion. Two examples are Ho et al. [8], who interpolate
between real images, and Meng et al. [16] who edit real
images via user sketches or strokes (SDEdit). Both construct
a noisy version of the real image and apply a backward dif-
fusion after editing. They suffer from an inherent tradeoff
between the realism of the generated image and its faithful-
ness to the original contents. DiffuseIT [13] performs image
translation guided by a reference image or by text, also with-
out explicit inversion. They guide the generation process by
losses that measure similarity to the original image [5].

A series of papers apply text-driven image-to-image trans-
lation using DDIM inversion. Narek et al. [25] achieve this
by manipulating spatial features and their self-attention in-
side the model during the diffusion process. Hertz et al. [7]
change the attention maps of the original image according
to the target text prompt and inject them into the diffusion
process. DiffEdit [4] automatically generates a mask for
the regions of the image that need to be edited, based on
source and target text prompts. This is used to enforce the
faithfulness of the unedited regions to the original image, in
order to battle the poor reconstruction quality obtained from
the inversion. This method fails to predict accurate masks
for complex prompts.

Some methods do not use DDIM inversion but utilize
model optimization based on the target text prompt. Diffu-
sionCLIP [12] uses model fine-tuning based on a CLIP loss
with a target text. Imagic [11] first optimizes the target text
embedding, and then optimizes the model to reconstruct the
image with the optimized text embedding. UniTune [26]
also uses fine-tuning and shows great success in making
global stylistic changes and complex local edits while main-
taining image structure. Other recent works like Palette [22]
and InstructPix2Pix [3], learn conditional diffusion models
tailored for specific image-to-image translation tasks.

…

…

…

…

𝑧𝑡
Noise latent space

𝑧𝑡+1

𝑥𝑇
𝜎𝑡𝜎𝑡+1

Ƹ𝜇 Ƹ𝜇

𝑥𝑡 𝑥0

Figure 3: The DDPM latent noise space. In DDPM, the gen-
erative (reverse) diffusion process synthesizes an image x0

in T steps, by utilizing T + 1 noise maps, {xT , zT , . . . , z1}.
We regard those noise maps as the latent code associated
with the generated image.

3. The DDPM noise space
Here we focus on the DDPM sampling scheme, which

is applicable in both pixel space [8] and latent space [21].
DDPM draws samples by attempting to reverse a diffusion
process that gradually turns a clean image x0 into white
Gaussian noise,

xt =
√

1− βtxt−1 +
√
βt nt, t = 1, . . . , T, (1)

where {nt} are iid standard normal vectors and {βt} is some
variance schedule. This diffusion process can be equivalently
expressed as

xt =
√
ᾱtx0 +

√
1− ᾱt ϵt, (2)

where αt = 1 − βt, ᾱt =
∏t

s=1 αs, and ϵt ∼ N (0, I).
It is important to note that in (2), the vectors {ϵt} are not
independent. In fact, ϵt and ϵt−1 are highly correlated for
all t. This is irrelevant for the training process, which is
not affected by the joint distribution of ϵt’s across different
timesteps, but it will be important for our discussion below.

The generative (reverse) diffusion process starts from a
random noise vector xT ∼ N (0, I) and iteratively denoises
it using the recursion

xt−1 = µ̂t(xt) + σtzt, t = T, . . . , 1, (3)

where {zt} are iid standard normal vectors, and

µ̂t(xt) =
√
ᾱt−1P (ft(xt)) +D(ft(xt)). (4)

Here, ft(xt) is a neural network that is trained to predict
ϵt from xt, P (ft(xt)) = (xt −

√
1− ᾱtft(xt))/

√
ᾱt is the

predicted x0, and D(ft(xt)) =
√

1− ᾱt−1 − σ2
t ft(xt) is a

direction pointing to xt. The variance schedule is taken to be
σt = ηβt(1 − ᾱt−1)/(1 − ᾱt), where η ∈ [0, 1]. The case
η = 1 corresponds to the original DDPM work, and η = 0
corresponds to the deterministic DDIM scheme.

This generative process can be conditioned on text [21] or
class [10] by using a neural network f that has been trained
conditioned on those inputs. Alternatively, conditioning can
be achieved through guided diffusion [5, 1], which requires
utilising a pre-trained classifier or CLIP model during the
generative process.

The vectors {xT , zT , . . . , z1} uniquely determine the im-
age x0 generated by the process (3) (but not vice versa).
We therefore regard them as the latent code of the model
(see Fig. 3). Here, we are interested in the inverse direction.
Namely, given a real image x0, we would like to extract
noise vectors that, if used in (3), would generate x0. We re-
fer to such noise vectors as consistent with x0. Our method,
explained next, works with any η ∈ (0, 1].

4. Edit friendly inversion
It is instructive to note that any sequence of T +1 images

x0, . . . , xT , that starts with the real image x0, can be used
to extract consistent noise maps by isolating zt from (3) as1

zt =
xt−1 − µ̂t(xt)

σt
, t = T, . . . , 1. (5)

However, unless such an auxiliary sequence of images is
carefully constructed, they are likely to be very far from the
distribution of inputs on which the network ft(·) was trained.
In that case, fixing the so-extracted noise maps and changing
the text condition, may lead to poor results.

What is a good way of constructing auxiliary images
x1, . . . , xT for (5) then? A naive approach is to draw them
from a distribution that is similar to that underlying the
generative process. Such an approach was pursued by Wu et
al. [28]. Specifically, they start by sampling xT ∼ N (0, I).
Then, for each t = T, . . . , 1 they isolate ϵt from (2) using xt

and the real x0, substitute this ϵt for ft(xt) in (4) to compute
µ̂t(xt), and use this µ̂t(xt) in (3) to obtain xt−1.

The noise maps extracted by this method are distributed
similarly to those of the generative process. However, un-
fortunately, they are not well suited for editing of global
structures. This is illustrated in Fig. 4 in the context of text
guidance and in Fig. 7 in the context of shifts. The reason for
this is that DDPM’s native noise space is not edit-friendly in
the first place. Namely, even if we take a model-generated
image, for which we have the “ground-truth” noise maps,
fixing them while changing the text prompt does not preserve
the structure of the image (see Fig. 2).

Here we propose to construct the auxiliary sequence
x1, . . . , xT such that structures within the image x0 would
be more strongly “imprinted” into the noise maps extracted
from (5). Specifically, we propose to construct them as

xt =
√
ᾱtx0 +

√
1− ᾱt ϵ̃t, 1, . . . , T, (6)

1Commonly, z1 = 0 in DDPM, so that we run only over t = T, . . . , 2.

Our inversionCycle DiffusionInput

a silhouette of a bird on a branch → a photo of a sparrow on a branch

a photo of a black car → a photo of a red car

a yellow cat with a bow on its neck → a yellow dog with a bow on its neck

Figure 4: DDPM inversion via CycleDiffusion vs. our
method. CycleDiffusion’s inversion [28] extracts a sequence
of noise maps {xT , zT , . . . , z1} whose joint distribution is
close to that used in regular sampling. However, fixing this
latent code and replacing the text prompt fails to preserve
the image structure. Our inversion deviates from the regular
sampling distribution, but better encodes the image structure.

where ϵ̃t ∼ N (0, I) are statistically independent. Note
that despite the superficial resemblance between (6) and (2),
these equations describe fundamentally different stochastic
processes. In (2) every pair of consecutive ϵt’s are highly
correlated, while in (6) the ϵ̃t’s are independent. This implies
that in our construction, xt and xt−1 are typically going to
be farther away from one another than in (2), so that every
zt extracted from (5) is expected to have a higher variance
than in the regular generative process. A pseudo-code of our
method is summarized in Alg. 1.

A few comments are in place regarding this inversion
method. First, it reconstructs the input image up to machine
precision, given that we compensate for accumulation of
numerical errors (last row in Alg. 1). Second, it is straight-
forward to use with any kind of diffusion process (e.g. a
conditional model [9, 8, 21], guided-diffusion [5], classifier-
free [10]) by using the appropriate form for µ̂t(·). Lastly,
due to the randomness in (6), we can obtain many different
inversions. While each of them leads to perfect reconstruc-
tion, when used for editing they will lead to different variants
of the edited image. This allows generating diversity in e.g.

Algorithm 1 Edit-friendly DDPM inversion

Input: real image x0

Output: {xT , zT , . . . , z1}
for t = 1 to T do
ϵ̃ ∼ N (0, 1)
xt ←

√
ᾱtx0 +

√
1− ᾱtϵ

end for
for t = T to 1 do
zt ← (xt−1 − µ̂t(xt))/σt

xt−1 ← µ̂t(xt)+σtzt // to avoid error accumulation
end for
Return: {xT , zT , . . . , z1}

text-based editing tasks, a feature not naturally available
with DDIM inversion methods (see Fig. 1).

5. Properties of the edit-friendly noise space
We now explore the properties of our edit-friendly noise

space and compare it to the native DDPM noise space. We
start with a 2D illustration, depicted in Fig. 5. Here, we
use a diffusion model designed to sample from N ((1010), I).
The top-left pane shows a regular DDPM process with 40
inference steps. It starts from xT ∼ N ((00), I) (black dot
at the bottom left), and generates a sequence {xt} (green
dots) that ends in x0 (black dot at the top right). Each
step is broken down to the deterministic drift µ̂t(xt) (blue
arrow) and the noise vector zt (red arrow). On the top-right
pane, we show a similar visualization, but for our latent
space. Specifically, here we compute the sequences {xt}
and {zt} using Alg. 1 for some given x0 ∼ N ((1010), I). As
can be seen, in our case, the noise perturbations {zt} are
larger. Furthermore, close inspection reveals that the angles
between consecutive noise vectors tend to be obtuse. In
other words, our noise vectors are (negatively) correlated
across consecutive times. This can also be seen from the
two plots in the bottom row, which depict the histograms
of angles between consecutive noise vectors for the regular
sampling process and for ours. In the former case, the angle
distribution is uniform, and in the latter it has a peak at 180◦.

The same qualitative behavior occurs in diffusion models
for image generation. Figure 6 shows the per-pixel variance
of zt and correlation between zt and zt−1 for sampling with
100 steps from an unconditional diffusion model trained on
Imagenet. Here the statistics were calculated over 10 im-
ages drawn from the model. As in the 2D case, our noise
vectors have higher variances and they exhibit negative cor-
relations between consecutive steps. As we illustrate next,
these properties make our noise vectors more edit friendly.

Image shifting Intuitively, shifting an image should be
possible by shifting all T + 1 maps of the latent code. Fig-
ure 7 shows the result of shifting the latent code of a model-

Regular dynamics Edit friendly dynamics

0 5 102
0
2
4
6
8

10
12

0 5 102
0
2
4
6
8

10
12

0 20 40 60 80 100 120 140 160 180
angle between (zt,zt 1)

0

200

400

600

800

1000

1200

nu
m

be
r o

f o
bs

er
va

tio
ns

0 20 40 60 80 100 120 140 160 180
angle between (zt,zt 1)

0

500

1000

1500

2000

2500

nu
m

be
r o

f o
bs

er
va

tio
ns

Figure 5: Regular vs. edit-friendly diffusion. In the regu-
lar generative process (top left), the noise vectors (red) are
statistically independent across timesteps and thus the an-
gle between consecutive vectors is uniformly distributed in
[0, 180◦] (bottom left). In our dynamics (top right) the noise
vectors have higher variances and are negatively correlated
across consecutive times (bottom right).

0 20 40 60 80 100
timestep

0

1

2

3

4

5

ST
D

native
Our

0 20 40 60 80 100
timestep

0.6

0.4

0.2

0.0

0.2

co
rr

native
Our

Figure 6: Native vs. edit friendly noise statistics. Here we
show the per-pixel standard deviations of {zt} and the per-
pixel correlation between them for model-generated images.

generated image by various amounts. As can be seen, shift-
ing the native latent code (the one used to generate the im-
age) leads to a complete loss of image structure. In contrast,
shifting our edit-friendly code, results in minor degradation.
Quantitative evaluation is provided in App. A.

Color manipulations Our latent space also enables conve-
nient manipulation of colors. Specifically, suppose we are
given an input image x0, a binary mask B, and a correspond-
ing colored mask M . We start by constructing {x1, . . . , xT }
and extracting {z1, . . . , zT } using (6) and (5), as before.
Then, we modify the noise maps as

zedited
t = zt + sB ⊙ (M − P (ft(xt))), (7)

d=1 d=2 d=4 d=8 d=12 d=16

N
at

iv
e

la
te

n
t

sp
ac

e

C
yc

le

D
if

fu
si

o
n

O
u
r

la
te

n
t

sp
ac

e

Figure 7: Image shifting. We shift to the right a 256× 256
image generated using 100 inference steps from an uncondi-
tional model trained on ImageNet, by d = 1, 2, 4, 8, 12, 16
pixels. When using the native noise maps (top) or the ones
extracted by CycleDiffusion [28] (middle) the structure is
lost. With our latent space, the structure is preserved.

S
D
E
d
it

OursInput Mask

T=25 T=30T=20

Figure 8: Color manipulation on a real image. Our method
(applied here from T2 = 70 to T1 = 20 with s = 0.05)
leads to a strong editing effect without modifying textures
and structures. SDEdit, on the other hand, either does not
integrate the mask well when using a small noise (left) or
does not preserve structures when the noise is large (right).
In both methods, we use an unconditional model trained on
ImageNet with 100 inference steps.

with P (ft(xt)) from (4), where s is a parameter controlling
the editing strength. We perform this modification over a
range of timesteps [T1, T2]. Note that the term in parenthesis
encodes the difference between the desired colors and the
predicted clean image in each timestep. Figure 8 illustrates
the effect of this process in comparison to SDEdit, which
suffers from an inherent tradeoff between fidelity to the input
image and conformation to the desired edit. Our approach
can achieve a strong editing effect without modifying tex-
tures (neither inside nor outside the mask).

Text-Guided Image Editing Our latent space can be fur-
ther utilized for text-driven image editing. Suppose we are

given a real image x0, a text prompt describing it psrc, and
a target text prompt ptar. To modify the image according
to these prompts, we extract the edit-friendly noise maps
{xT , zT , . . . , z1}, while injecting psrc to the denoiser. We
then fix those noise maps and generate an image while in-
jecting ptar to the denoiser. We run the generation process
starting from timestep T − Tskip, where Tskip is a parameter
controlling the adherence to the input image. Figures 1, 2,
4, and 9 show several text driven editing examples using
this approach. As can be seen, this method nicely modifies
semantics while preserving the structure of the image. In
addition, it allows generating diverse outputs for any given
edit (Figs. 1, 16 and 17). Figures 1, 9 and 10 further illus-
trate the effect of using our inversion in combination with
methods that currently rely on DDIM inversion. As can be
seen, these methods often do not preserve fine textures, like
fur, flowers, or leaves of a tree, and oftentimes also do not
preserve the global structure of the objects. By integrating
our inversion, structures and textures are better preserved.

6. Experiments
We evaluate our method both quantitatively and quali-

tatively on text-guided editing of real images. We analyze
the usage of our extracted latent code by itself (as explained
in Sec. 5), and in combination with existing methods that
currently use DDIM inversion. In the latter case, we extract
the noise maps using our DDPM-inversion and inject them
in the reverse process, in addition to any manipulation they
perform on e.g. attention maps. All experiments use a real
input image as well as source and target text prompts.

Implementation details We use Stable Diffusion [21], in
which the diffusion process is applied in the latent space
of a pre-trained image autoencoder. The image size is
512 × 512 × 3, and the latent space is 64 × 64 × 4. Our
method is also applicable in unconditional pixel space mod-
els using CLIP guidance, however we found Stable Diffusion
to lead to better results. We use η = 1 and 100 inference
steps, unless noted otherwise. Two hyper-parameters con-
trol the balance between faithfulness to the input image and
adherence to the target prompt: the strength of the classifier-
free guidance [10], and Tskip explained in Sec. 5. In all our
numerical analyses and all results in Fig. 9, we fixed those
parameters to strength = 15 and Tskip = 36. In App. C, we
provide a thorough analysis of their effects.

Datasets We use two datasets of real images: (i) “modi-
fied ImageNet-R-TI2I” from [25] with additional examples
collected from the internet and from other datasets, (ii) “mod-
ified Zero-Shot I2IT”, which contains images of 4 classes
(Cat, Dog, Horse, Zebra) from [19] and from the internet.
The first dataset comprises 48 images, with 3-5 different
target prompts for each image. This results in a total of
212 image-text pairs. The second dataset has 15 images in

Input
(# steps)

Our inv.
(100)

DDIM inv.
(100)

P2P
(100)

P2P+Our
(100)

PnP
(1000)

A bear doll with a blue knitted sweater → A bear doll with a blue knitted sweater and a hat

An origami of a hummingbird → A sculpture of a hummingbird

A photo of a horse in the mud → A photo of a zebra in the snow

A sculpture of a panda→ A sketch of a panda

A photo of a cat sitting on a car → A photo of a smiling dog sitting on a car

Figure 9: Comparisons. We show results for editing of real images using our inversion by itself and in combination with other
methods. Our approach maintains high fidelity to the input while conforming to the text prompt.

each category with one target prompt for each, making 60
image-text pairs in total. Please see App. D for full details.

Metrics We numerically evaluate the results using two
complementary metrics: LPIPS [29] to quantify the extent
of structure preservation (lower is better) and a CLIP-based
score to quantify how well the generated images comply
with the text prompt (higher is better). We also measure

running time in seconds, and diversity among generated
outputs (higher is better). Specifically, for each image and
source text psrc, we generate 8 outputs with target text ptar
and calculate the average LPIPS distance over all (82) pairs.

Comparisons on the modified ImageNet-R-TI2I dataset
We perform comparisons with Prompt-to-Prompt (P2P) [7],
which uses DDIM inversion. We also evaluate the integra-

Zebra → Horse Zebra → Horse Dog → Cat Cat → Dog Cat → Dog

In
p

u
t

Z
er

o
 s

h
o

t
Z

er
o

 s
h

o
t

+
 o

u
rs

Figure 10: Improving Zero-Shot I2I Translation. Images generated by Zero Shot I2I suffer from loss of detail. With our
inversion, fine textures, like fur and flowers, are retained. All results use the default cross-attention guidance weight (0.1).

tion of P2P with our inversion. In that case, we decrease the
hyper-parameter controlling the cross-attention from 0.8 to
0.6 (as our latent space already strongly encodes structure).
Furthermore, we compare to plain DDIM inversion and to
Plug-and-Play (PnP) [25]. We note that P2P has different
modes for different tasks (swap word, prompt refinement),
and we chose its best mode for each image-prompt pair. As
seen in Fig. 9, our method successfully modifies real images
according to the target prompts. In all cases, our results
exhibit both high fidelity to the input image and adherence to
the target prompt. DDIM inversion and P2P do not preserve
structure well. Yet, P2P does produce appealing results when
used with our inversion. PnP often preserves structure, but
requires 1000 steps and more than 3 minutes to edit an image.
As seen in Tab. 1, our inversion achieves a good balance be-
tween LPIPS and CLIP, while requiring short edit times and
supporting diversity among generated outputs. Integrating
our inversion into P2P improves their performance in both
metrics. See more analyses in App. D.1.

Comparisons on the modified Zero-Shot I2IT dataset
Next, we compare our method to Zero-Shot Image-to-Image
Translation (Zero-Shot) [19], which uses DDIM inversion.
This method only translates between several predefined
classes. We follow their setting and use 50 diffusion steps.
When using our inversion, we decrease the hyper-parameter
controlling the cross-attention from 0.1 to 0.03. As can be
seen in Fig. 10, while Zero-Shot’s results comply with the
target text, they are typically blurry and miss detail. Inte-
grating our inversion adds back the details from the input
image. As seen in Tab. 2, integrating our inversion improves

Method CLIP sim.↑ LPIPS↓ Diversity↑ Time

DDIM inv. 0.31 0.62 0.00 39
PnP 0.31 0.36 0.00 206
P2P 0.30 0.61 0.00 40

P2P+Our 0.31 0.25 0.11 48
Our inv. 0.32 0.29 0.18 36

Table 1: Evaluation on modified ImageNet-R-TI2I dataset.

Method CLIP Acc.↑ LPIPS↓ Diversity↑ Time
Zero-Shot 0.88 0.35 0.07 45

Zero-Shot+Our 0.88 0.27 0.16 46

Table 2: Evaluation on the modified Zero-Shot I2IT dataset.

the similarity to the input image while keeping the CLIP
accuracy high and exhibiting non-negligible diversity among
the generated outputs. See more details in App. D.2.

7. Conclusion

We presented an inversion method for DDPM. Our noise
maps behave differently than the ones used in regular sam-
pling: they are correlated across timesteps and have a higher
variance. However, they encode the image structure more
strongly, and are thus better suited for image editing. Particu-
larly, we showed that they can be used to obtain state-of-the-
art results on text-based editing tasks, either by themselves
or in combination with other editing methods. And in con-
trast to methods that rely on DDIM inversion, our approach
can generate diverse results for any given image and text.

References
[1] Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended

diffusion for text-driven editing of natural images. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 18208–18218, 2022. 1, 4

[2] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Ji-
aming Song, Karsten Kreis, Miika Aittala, Timo Aila, Samuli
Laine, Bryan Catanzaro, Tero Karras, and Ming-Yu Liu. eDiff-
I: Text-to-image diffusion models with ensemble of expert
denoisers. arXiv preprint arXiv:2211.01324, 2022. 1

[3] Tim Brooks, Aleksander Holynski, and Alexei A Efros. In-
structPix2pix: Learning to follow image editing instructions.
arXiv preprint arXiv:2211.09800, 2022. 3

[4] Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and
Matthieu Cord. DiffEdit: Diffusion-based semantic image
editing with mask guidance. In The Eleventh International
Conference on Learning Representations (ICLR), 2023. 1, 2,
3

[5] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in Neural Information
Processing Systems (NeurIPS), 34:8780–8794, 2021. 3, 4

[6] Adham Elarabawy, Harish Kamath, and Samuel Denton. Di-
rect inversion: Optimization-free text-driven real image edit-
ing with diffusion models. arXiv preprint arXiv:2211.07825,
2022. 2

[7] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,
Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt im-
age editing with cross attention control. arXiv preprint
arXiv:2208.01626, 2022. 1, 2, 3, 7, 15

[8] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. In H. Larochelle, M. Ranzato, R.
Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems (NeurIPS), volume 33, pages
6840–6851, 2020. 1, 2, 3, 4

[9] Jonathan Ho, Chitwan Saharia, William Chan, David J. Fleet,
Mohammad Norouzi, and Tim Salimans. Cascaded diffusion
models for high fidelity image generation. Journal of Machine
Learning Research, 23:47:1–47:33, 2021. 4

[10] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. In NeurIPS 2021 Workshop on Deep Generative
Models and Downstream Applications, 2021. 3, 4, 6, 14

[11] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen
Chang, Tali Dekel, Inbar Mosseri, and Michal Irani. Imagic:
Text-based real image editing with diffusion models. arXiv
preprint arXiv:2210.09276, 2022. 2, 3

[12] Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Dif-
fusionCLIP: Text-guided diffusion models for robust image
manipulation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
2416–2425, 2022. 1, 2, 3

[13] Gihyun Kwon and Jong Chul Ye. Diffusion-based image
translation using disentangled style and content representa-
tion. arXiv preprint arXiv:2209.15264, 2022. 3

[14] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. BLIP:
Bootstrapping language-image pre-training for unified vision-
language understanding and generation. In International Con-

ference on Machine Learning (ICML), pages 12888–12900,
2022. 15

[15] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher
Yu, Radu Timofte, and Luc Van Gool. RePaint: Inpainting
using denoising diffusion probabilistic models. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 11451–11461, 2022. 1

[16] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun
Wu, Jun-Yan Zhu, and Stefano Ermon. SDEdit: Guided image
synthesis and editing with stochastic differential equations.
In International Conference on Learning Representations
(ICLR), 2022. 1, 3

[17] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch,
and Daniel Cohen-Or. Null-text inversion for editing real
images using guided diffusion models. arXiv preprint
arXiv:2211.09794, 2022. 2, 3

[18] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh,
Pranav Shyam, Pamela Mishkin, Bob Mcgrew, Ilya Sutskever,
and Mark Chen. GLIDE: Towards photorealistic image gen-
eration and editing with text-guided diffusion models. In
Proceedings of the 39th International Conference on Machine
Learning (ICLR), volume 162 of Proceedings of Machine
Learning Research, pages 16784–16804. PMLR, 17–23 Jul
2022. 1

[19] Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun
Li, Jingwan Lu, and Jun-Yan Zhu. Zero-shot image-to-image
translation. arXiv preprint arXiv:2302.03027, 2023. 1, 2, 6,
8, 15

[20] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gener-
ation with CLIP latents. arXiv preprint arXiv:2204.06125,
2022. 1

[21] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 10684–10695, 2022. 1, 3, 4, 6

[22] Chitwan Saharia, William Chan, Huiwen Chang, Chris A. Lee,
Jonathan Ho, Tim Salimans, David J. Fleet, and Mohammad
Norouzi. Palette: Image-to-image diffusion models. ACM
SIGGRAPH 2022 Conference Proceedings, 2021. 1, 3

[23] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li,
Jay Whang, Emily L Denton, Kamyar Ghasemipour, Raphael
Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Pho-
torealistic text-to-image diffusion models with deep language
understanding. Advances in Neural Information Processing
Systems (NeurIPS), 35:36479–36494, 2022. 1

[24] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising
diffusion implicit models. In International Conference on
Learning Representations (ICLR), 2021. 2

[25] Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel.
Plug-and-play diffusion features for text-driven image-to-
image translation. arXiv preprint arXiv:2211.12572, 2022. 1,
2, 3, 6, 8, 15

[26] Dani Valevski, Matan Kalman, Yossi Matias, and Yaniv
Leviathan. UniTune: Text-driven image editing by fine tuning
an image generation model on a single image. arXiv preprint
arXiv:2210.09477, 2022. 2, 3

[27] Bram Wallace, Akash Gokul, and Nikhil Naik. EDICT: Ex-
act diffusion inversion via coupled transformations. arXiv
preprint arXiv:2211.12446, 2022. 2, 3

[28] Chen Henry Wu and Fernando De la Torre. Unifying diffusion
models’ latent space, with applications to CycleDiffusion and
guidance. arXiv preprint arXiv:2210.05559, 2022. 1, 2, 3, 4,
6, 12

[29] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 586–595, 2018. 7

A. Shifting the latent code
As described in Sec. 3, we can shift an input image by shifting its extracted latent code. This requires inserting new

columns/rows at the boundary of the noise maps. To guarantee that the inserted columns/rows are drawn from the same
distribution as the rest of the noise map, we simply copy a contiguous chunk of columns/rows from a different part of the
noise map. In all our experiments, we copied into the boundary the columns/rows indexed {50, . . . , 50 + d− 1} for a shift
of d pixels. We found this strategy to work better than randomly drawing the missing columns/rows from a white normal
distribution having the same mean and variance as the rest of the noise map. Figure 11 depicts the MSE over the valid pixels
that is incurred when shifting the noise maps. This analysis was done using 25 generated-images. As can be seen, shifting
our edit-friendly code results in minor degradation while shifting the native latent code leads to a complete loss of the image
structure.

0 10 20 30 40 50 60
d

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
SE

native
Our

Figure 11: Shifting the latent code. We plot the MSE over the valid pixels after shifting the latent code and generating the
image. The colored regions represent one standard error of the mean (SEM) in each direction.

B. CycleDiffusion

As mentioned in Sec. 5, CycleDiffusion [28] extracts a sequence of noise maps {xT , zT , . . . , z1} for the DDPM scheme.
However, in contrast to our method, their noise maps have statistical properties that resemble those of regular sampling.
This is illustrated in Fig. 12, which depicts the per-pixel standard deviations of {zt} and the correlation between zt and zt−1

for CycleDiffusion, for regular sampling, and for our approach. These statistics were calculated over 10 images using an
unconditional diffusion model trained on Imagenet. As can be seen, the CycleDiffusion curves are almost identical to those of
regular sampling, and are different from ours.

0 20 40 60 80 100
timestep

0

1

2

3

4

5

6

ST
D

native
CycleDiffusion
Our

0 20 40 60 80
timestep

0.6

0.4

0.2

0.0

0.2
co

rr
native
CycleDiffusion
Our

Figure 12: CycleDiffusion noise statistics. Here we show the per-pixel standard deviations of {zt} and the per-pixel
correlation between them for mssodel-generated images.

The implication of this is that similarly to the native latent space, simple manipulations on CycleDiffusion’s noise maps
cannot be used to obtain artifact-free effects in pixel space. This is illustrated in Fig. 13 in the context of horizontal flip and
horizontal shift by 30 pixels to the right. As opposed to Cycle diffusion, applying those transformations on our latent code,
leads to the desired effects, while better preserving structure.

This behavior also affects the text based editing capabilities of CycleDiffusion. Particularly, the CLIP similarity and
LPIPS distance achieved by CycleDiffusion on the modified ImageNet-R-TI2I dataset are plotted in Fig. 15. As can be seen,
when tuned to achieve a high CLIP-similarity (i.e. to better conform with the text), CycleDiffusion’s LPIPS loss increases
significantly, indicating that the output images become less similar to the input images. For the same level of CLIP similarity,
our approach achieves a substantially lower LPIPS distance.

Our latent space
CycleDiffusion

latent space
Real image

S
h

if
t

F
lip

Figure 13: Flip and shift with CycleDiffusion and with our inversion.

C. The effects of the skip and the strength parameters
Recall from Sec. 3 that to perform text-guided image editing using our inversion, we start by extracting the latent noise

maps while injecting the source text into the model, and then generate an image by fixing the noise maps and injecting a
target text prompt. Two important parameters in this process are Tskip, which controls the timestep (T − Tskip) from which we
start the generation process, and the strength parameter of the classifier-free scale [10]. Figure 14 shows the effects of these
parameters. When Tskip is large, we start the process with a less noisy image and thus the output image remains close to the
input image. On the other hand, the strength parameter controls the compliance of the output image with the target prompt.

Tskip

st
re
n
gt
h

a panda doll with a blue knitted sweater in the rain

A bear doll with a blue knitted sweater

Figure 14: The effects of the skip and the strength parameters.

D. Additional details on experiments and further numerical evaluation

For all our text-based editing experiments, we used Stable Diffusion as our pre-trained text-to-image model. We specifically
used the StableDiffusion-v-1-4 checkpoint. We ran all experiments on an RTX A6000 GPU. We now provide additional details
about the evaluations reported in the main text. All datasets and prompts will be published.

D.1. Experiments on the modified ImageNet-R-TI2I

Our modified ImageNet-R-TI2I dataset contains 44 images: 30 taken from PnP [25], and 14 from the Internet and from the
code bases of other existing text-based editing methods. We verified that there is a reasonable source and target prompt for
each image we added. For P2P [7] (with and without our inversion), we used the first 30 images with the “replace” option,
since they were created with rendering and class changes. That is, the text prompts were of the form “a≪rendering≫ of a
≪class≫” (e.g. “a sketch of a cat” to “a sculpture of a cat”). The last 14 images include prompts with additional tokens and
different prompt lengths (e.g. changing “A photo of an old church” to “A photo of an old church with a rainbow”). Therefore
for those images we used the “refine” option in P2P. We configured all methods to use 100 forward and backward steps, except
for PnP whose supplied code does not work when changing this parameter.

Table 3 summarizes the hyper-parameters we used for all methods. For our inversion and for P2P with our inversion, we
arrived at those parameters by experimenting with various sets of the parameters and choosing the configuration that led to the
best CLIP loss under the constraint that the LPIPS distance does not exceed 0.3. For DDIM inversion and for P2P (who did
not illustrate their method on real images), such a requirement could not be satisfied. Therefore for those methods we chose
the configuration that led to the best CLIP loss under the constraint that the LPIPS distance does not exceed 0.62. For PnP,
we used the default parameters supplied by the authors. In Fig. 15 we show the CLIP-LPIPS losses graph for all methods
reported in the paper, as well as for CycleDiffusion. In this graph, we show three different parameter configurations for our
inversion, for P2P with our inversion, and for CycleDiffusion. As can be seen, our method (by itself or with P2P) achieves the
best LPIPS distance for any given level of CLIP similarity.

Method
#inv. #edit

strength Tskip τx/τasteps steps

PnP 1000 50 10 0 40/25
DDIM inv. 100 100 9 0 –

Our inv. 100 100 15 36 –
P2P 100 100 9 0 80/40

P2P + Our inv. 100 100 9 12 60/20

Table 3: Hyper-parameters used in experiments on the modified ImageNet-R-TI2I dataset. The parameter ‘strength’
refers to the classifier-free scale of the generation process. As for the strength used in the inversion stage, we set it to 3.5 for
all methods except for PnP, which uses 1. The timestep at which we start the generation is T − Tskip and, in case of injecting
attentions, we also report the timestep at which the cross- and self-attentions start to be injected, τx and τa respectively.

D.2. Experiments on the modified zero-shot I2IT dataset

The second dataset we used is the modified Zero-Shot I2IT dataset, which contains 4 categories (cat, dog, horse, zebra).
Ten images from each category were taken from Parmar et al. [19], and we added 5 more images from the Internet to
each category. Zero-Shot I2I [19] does not use source-target pair prompts, but rather pre-defined source-target classes (e.g.
cat↔dog). For their optimized DDIM-inversion part, they use a source prompt automatically generated with BLIP [14]. When
combining our inversion with their generative method, we use Tskip = 0 and an empty source prompt. Table 4 summarizes the
hyper-parameters used in every method.

0.285 0.290 0.295 0.300 0.305 0.310 0.315 0.320
CLIP

0.2

0.3

0.4

0.5

0.6
LP

IP
S

Our
P2P+Our

DDIMP2P

CycleDiffusion

PnP

Figure 15: Fidelity to source image vs. compliance with target text. We show a comparison of all methods over the modified
ImageNet-R-TI2I in terms of the LPIPS and CLIP losses. The parameters used for the evaluation are reported in Tab. 3. In
addition, we depict three options for our inversion, for P2P with our inversion, and for CycleDiffusion. These three options
correspond to different choices of the parameters (strength,Tskip): for our method (15, 36), (12, 36), (9, 36), for P2P+Ours
(7.5, 8), (7.5, 12), (9, 20), and for CycleDiffusion (3, 30), (4, 25), (4, 15). For the CLIP loss, higher is better while for the
LPIPS loss, lower is better.

Method
#inv. #edit

strength Tskip λxasteps steps

Zero-Shot 50 50 7.5 0 0.1
Zero-Shot+Our 50 50 7.5 0 0.03

Table 4: Hyper-parameters used in experiments on the modified Zero-Shot I2IT dataset. In this method, cross-attention
guidance weight is the parameter used to control the consistency in the cross-attention maps, denoted here as λxa. We set the
strength (classifier-free scale) in the inversion part to be 1 and 3.5 for “Zero-shot” and “Zero-shot+Our” respectively.

E. Additional results
Due to the stochastic manner of our method, we can generate diverse outputs, a feature that is not naturally available with

methods relying on the DDIM inversion. Figures 16 and 17 show several diverse text-based editing results. Figures 18 and 19
provide further qualitative comparisons between all methods tested on the ImageNet-R-TI2I dataset.

A painting of a goldfish→ A video-game of a shark

A photo of a car on the side of the street→ A photo of a truck on the side of the street

A photo of a couple dancing→ A cartoon of a couple dancing

A photo of an old church→ A photo of an old church with a rainbow

A sketch of a cat→ A sculpture of a cat

Input Generated images

Figure 16: Diverse text-based editing with our method. We apply our inversion five times with the same source and target
prompts (shown beneath each example). Note how the variability between the results is not negligible, while all of them
conform to the structure of the input image and comply with the target text prompt. Notice e.g. the variability in the sculpture
cat’s eyes and mouth, and how the rainbow appears in different locations and angles.

A cartoon on a castle→ A sculpture of a castle

A cartoon on a castle→ An embroidery of a temple

A cartoon of a cat→ An origami of a dog

A sculpture of a panda→ A sketch of a panda

A photo of a horse in the mud → A photo of a zebra in the snow

A cat is sitting next to a mirror→ A silver cat sculpture sitting next to a mirror

Input Generated images

Figure 17: Additional results for diverse text-based editing with our method. Notice that each edited result is slightly
different. For example, the eyes and nose of the origami dog change between samples, and so do the zebra’s stripes.

A cartoon of a cat→ An image of a bear

A cat sitting next to a mirror → watercolor painting of a cat sitting next to a mirror

A photo of spiderman → A photo of a golden robot

A toy of a jeep → A cartoon of a jeep

A toy of a husky → A sculpture of a husky

Input
(# steps)

Our inv.
(100)

DDIM inv.
(100)

P2P
(100)

P2P+Our
(100)

PnP
(1000)

Figure 18: Qualitative comparisons between all methods.

A photo of an old church → A photo of a wooden house

An origami of a hummingbird → A sketch of a parrot

A sculpture of a pizza → An image of a balloon

A scene of a valley → A scene of a valley with waterfall

A photo of an old church → A photo of an old church with a rainbow

Input
(# steps)

Our inv.
(100)

DDIM inv.
(100)

P2P
(100)

P2P+Our
(100)

PnP
(1000)

Figure 19: Additional qualitative comparisons between all methods.

